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Regression and model building

Statisticians, like artists, have the bad habit of falling in love with their models. (Attributed

to George Box)

Overview

Regression has already been encountered in earlier chapters. In this chapter regression

modelling is examined in more detail. In terms of the process model shown earlier in

Figure 1.3, regression methods enable the models to be built in terms of linking process

inputs (Xs) to process performancemeasures (Ys) via functional relationships of the formY¼ f

(X). The links between regression models and design of experiments will be established.

Scenarios in which the response variable is categorical will be dealt with under the heading of

logistic regression. TheMinitab facilities for the creation, analysis and checking of regression

models will be exemplified.

10.1 Regression with a single predictor variable

In Section 3.2.1 reference was made to data on the diameter (Y, mm) of machined automotive

components and the temperature (X, �C) of the coolant supplied to the machine at the time of

production. Given that the target diameter is 100mm, a scatterplot indicated the possibility of

improving the process through controlling the coolant temperature, thereby leading to less

variability in the diameter of the components. Use ofGraph> Scatterplot. . . and theWith

Regression option yielded the scatterplot in Figure 10.1, with the addition of the least squares

regression line modelling the linear relationship between diameter and temperature. (Use of

Data View. . . and the Regression tab indicates that the default is to fit a linear model as

displayed, but quadratic and cubic models may also be fitted.) The data are available in

Diameters.MTW.
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The equation of the least squares regression linemay be found using Stat>Regression>
Regression. . . . In the dialog Response: Diameter and Predictors: Temperature must be

specified. Thus for a functional relationship Y¼ f(X), Y is a response and X is a predictor in the

terminology used byMinitab. Given that the data are recorded in time order, it is appropriate to

check Four in one under Graphs. . . . Defaults were chosen elsewhere. Various aspects of

what is known as simple linear regression will now be discussed with reference to the output.

The first portion of the Session Window output is shown Panel 10.1. The equation of the

least squares regression line fitted to the data is

Diameter ¼ 100:234� 0:010 726� Temperature

or, alternatively,

y ¼ 100:234� 0:010 726x:

Figure 10.1 Scatterplot of diameter against temperature of coolant.

Regression Analysis: Diameter versus Temperature  

The regression equation is 

Diameter = 100 - 0.0107 Temperature 

Predictor         Coef   SE Coef        T      P 

Constant       100.234     0.022  4475.56  0.000 

Temperature  -0.010726  0.001069   -10.04  0.000 

Panel 10.1 Regression analysis for diameter versus temperature.
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In dealing with regression situations statisticians often make use of the linear model

Yi ¼ aþbxi þ ei;

wherea is the intercept parameter,b is the slope parameter and ei is the randomerror, a random

variable with mean 0 and standard deviation s. It follows that

EðYiÞ ¼ EðaÞþEðbxiÞþEðeiÞ ¼ aþbxi;
varðYiÞ ¼ varðeiÞ ¼ s2;

where s2 is a constant. This means that if Y is observed repeatedly for a particular value of x,

then the resulting population of Y-values will have a statistical distribution with mean aþbx

and variance s2.

The further assumptions that the random errors are independent and normally distributed

are also frequently made. One consequence of these assumptions is that the population of

Y-values that could be observed for a givenx has the normal distributionwithmeanaþbx and

variance s2.

The fitted least squares regression line may be written as

y ¼ aþ bx

where a¼ 100.234 and b¼ � 0.010 726 respectively estimate the model parameters a and b.

The P-values shown in Panel 10.1 are for two t-tests of hypotheses for the model in which

Yi � Nðaþbxi;s
2Þ. The first test concerns the intercept parameter, a, in the model:

H0 : a ¼ 0; H1 : a 6¼ 0:

With P-value 0.000, to three decimal places, we have very strong evidence that the intercept

parameter is nonzero.

The second test concerns the slope parameter, b, in the model:

H0 : b ¼ 0; H1 : b 6¼ 0:

With P-value 0.000, to three decimal places, we have very strong evidence that the slope

parameter is nonzero. This second test may be considered as a test of whether or not there is a

linear relationship between Y and x, i.e. between diameter and temperature. (The t-test

performed here is equivalent to the test the that the correlation coefficient is zero.)

Whenever a least squares line has been fitted to a set of bivariate data, residuals may be

calculated. For any statistical model fitted to data,

Data ¼ FitþResidual;

as the reader will recall fromChapter 7. The residual may be thought of as that ‘component’ of

the data that remains when the model has performed its task of ‘explaining’ the data:

Residual ¼ Data� Fit ¼ yi � Ŷ i ¼ yi �ðaþ bxiÞ:

The symbol Ŷ i is used for the fitted value of y. For example, for the first data point we have

x1¼ 20.9 so the fitted value is Ŷ1 ¼ 100:234� 0:010 726� 20:9 ¼ 100:234� 0:224 ¼
100:010, to three decimal places. Hence, the first residual is calculated to be
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y1 � Ŷ1 ¼ 100:001� 100:010 ¼ � 0:009. The reader is invited to check that the residual for

the last data point is 0.026.

Checking Residuals and Fits under Storage during the Regression dialog enables

columns of the residuals and fitted values to be created. The software gives the first residual

as � 0.008 975 5 which rounds to � 0.009. Having fitted a linear model to data using least

squares, it is standard practice to plot the residuals in various ways. The Four in one facility in

Minitab yields the following plots:

. histogram of residuals;

. normal probability plot of residuals;

. residuals versus fits;

. residuals versus order.

The four plots for the regression of diameter on temperature are displayed in Figure 10.2.

The shape of the histogramand the linear normal probability plot support the assumption of

normality in the model. The fact that the plot of residuals against fitted values has the

appearance of a horizontal band of randomly distributed points supports the assumption of

constant variability in the model. Finally, the absence of any patterns or trends in the plot of

residuals against order suggests that there have been no time-related factors influencing the

process. Thus we may consider the residual plots to be satisfactory in this case.

The next portion of the Session window output is shown in Panel 10.2. The value of s

provides an estimate of the standard deviation, s, in the model. The value of R2 (R-Sq), in this

case where there is a single predictor variable, is r2, the coefficient of determination between

diameter and temperature expressed as a percentage – see Section 3.2.2. It indicates the

proportion of the variation in diameter that can be attributed to its linear dependence on

Figure 10.2 Residual plots for regression of diameter on temperature.
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temperature. R2 may also be calculated as the square of the correlation between the observed

and fitted values of diameter, the response.

We may summarize the model as follows. The expected value of diameter is linearly

related to temperature by the equation

Diameter ¼ 100:234� 0:010 726� Temperature

For any specific temperature, diameter is normally distributed, with mean estimated by

100:234� 0:010 726� Temperature

andwith standard deviation estimated to be 0.0192. Just over half thevariation in diametermay

be explained through its linear dependence on temperature.

An enhanced version of the plot in Figure 10.1may be obtained using Stat>Regression>
FittedLine Plot. . . , specifyingDiameter as the response andTemperature as the predictor and

accepting defaults otherwise. Theplot is shown inFigure 10.3. This plot is annotated byMinitab

with the equation of the regression line, the estimated standard deviation of the random errors

and thevalue ofR2. (The adjusted value ofR2, denoted byR-Sq(adj)will be discussed later in the

chapter.) This plotwould clearly complement thewritten summaryof themodel in, for example,

a project report. (The first and last data points have been indicated by square symbols and

vertical line segments drawn from the regression line to these data points. The magnitudes of

these segments are themagnitudes of the residuals. The first data point lies below the regression

line corresponding to its associated negative residual; the last data point lies above the line

Figure 10.3 Fitted line plot for diameter on temperature.

S = 0.0192354   R-Sq = 50.7%   R-Sq(adj) = 50.2%

Panel 10.2 Further output from regression analysis.
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corresponding to its associated positive residual. The fitted least squares regression line is such

that the sum of the squares of all 100 residuals is a minimum.)

The Session window output also includes the ANOVA output displayed in Panel 10.3. The

ANOVAprovides an alternativemethod of testing the null hypothesis that the slope parameter,

b, is zero. In fact the F-statistic of 100.74 quoted is the square, allowing for rounding, of

the t-statistic of �10.04 quoted in Panel 10.1. The P-value of 0.000, to three decimal places,

provides strong evidence that null hypothesis H0 :b¼ 0 should be rejected in favour of the

alternative hypothesis H1 :b 6¼ 0.

The calculation of residuals has already been detailed.Minitab also computes standardized

residuals by dividing the residuals by their standard deviation. The final part of the Session

window output alerts the user to any observations in the data set that yield a standardized

residual with an absolute value in excess of 2. Details of such observations are listed under the

headingUnusualObservations and identified by a letterR at the end of the line – see Panel 10.4.

With a standard normal distribution the probability of obtaining values exceeding 2, in

absolute value, is approximately 5%. Thus being alerted to six observations in this category,

when fivewould be expected from a sample of 100 observations, need not be a major concern.

The user is also alerted to any observations in the data set that have x-values that give them

large influence. An X at the end of the line of output indicates such observations. Observation

number 31 is adjudged to have a temperature value which gives it large influence in the

analysis. This observation corresponds to the point in the bottom right-hand corner of the

scatterplots in Figures 10.1 and 10.3. One would wish to check that the data for this point had

been correctly entered or that there were no unusual circumstances affecting the process when

the observation was made. One might also investigate the regression analysis with all points

flagged as having large influence deleted from the data set.

Analysis of Variance 

Source      DF         SS         MS       F      P 
Regression   1  0.0372752  0.0372752  100.74  0.000 

Error       98  0.0362602  0.0003700 

Total       99  0.0735354 

Panel 10.3 ANOVA for regression analysis.

Unusual Observations 

Obs  Temperature  Diameter      Fit  SE Fit  Residual  St Resid 

 31         25.7    99.952   99.958   0.005    -0.006     -0.35 X 

 59         21.5    99.961  100.004   0.002    -0.043     -2.22R 

 69         22.7   100.032   99.991   0.003     0.041      2.17R 

 71         22.7    99.947   99.991   0.003    -0.044     -2.29R 
 76         24.4   100.017   99.972   0.004     0.045      2.37R 

 86         23.3   100.025   99.984   0.003     0.041      2.15R 

 99         23.7   100.023   99.980   0.004     0.043      2.28R 

R denotes an observation with a large standardized residual. 

X denotes an observation whose X value gives it large leverage. 

Panel 10.4 List of unusual observations from regression analysis.
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The target diameter was 100mm. Substitution of this value for diameter into the fitted

linear equation yields the following:

Diameter ¼ 100:234� 0:010 726� Temperature

100 ¼ 100:234� 0:010 726� Temperature

0:010 726� Temperature ¼ 0:234

Temperature ¼
0:234

0:010 726
¼ 21:8:

Thus the model suggests that the temperature of the coolant should be controlled at 21.8 �C.

The model may be used to make predictions of diameter for any specific temperature of

interest. Predictions may be obtained by using Stat>Regression>Regression. . . again,

with Response: Diameter and Predictors: Temperature, specified as previously. In order to

predict for temperature 21.8, for example, the value 21.8must be entered underOptions. . . by

specifying Prediction intervals for new observations: 21.8. (More than one temperature

value may be entered if required.) The resulting output in the Session window is shown in

Panel 10.5.

The order of presentation is arguably not the best. The second section informs the user that

diameter has been predicted for temperature 21.8 �C. The first section indicates that the

predicted diameter is 100.000 (under the heading Fit), thus confirming that the calculation

performed earlier was correct! Two intervals are given. The 95% CI of (99.996,100.005) is a

95% confidence interval for the mean diameter obtained when the process is operated with

temperature 21.8 �C. (The SE Fit value of 0.002 is the estimated standard deviation required in

the computation of the confidence interval.) The 95% PI of (99.962,100.039) is a prediction

interval in which we can have 95% confidence that an individual diameter, obtained when the

process is operated with temperature 21.8 �C, will fall. Note that the prediction interval is

wider than the confidence interval.

Instead of listing one or more temperature values under Options. . . in Prediction

intervals for new observations:, one can create a column of temperature values of interest

and insert the column name instead of a list. This was done in order to create Table 10.1.

Temperatures from17 �C to 26 �C, at intervals of 1 �C,were selected in order to cover the range

of temperatures encountered in the investigation.

Note that the width of the intervals varies, with the narrowest intervals occurring for

temperature 21 �C. In fact the narrowest possible intervals occur when temperature equals the

mean of all 100 temperatures recorded in the given data set, i.e. 20.9 �C. In order to display

Predicted Values for New Observations 

New Obs      Fit  SE Fit        95% CI             95% PI 

      1  100.000   0.002  (99.996, 100.005)  (99.962, 100.039) 

Values of Predictors for New Observations 

New Obs  Temperature 

      1         21.8 

Panel 10.5 Predictions of diameter from model.
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these intervals use was made of Stat>Regression>Fitted Line Plot. . . , specifying

diameter as the response and temperature as the predictor, and under Options. . . checking

both Display confidence interval and Display prediction interval as Display Options. The

resultant plot is shown in Figure 10.4. The arrowed vertical line segment that has been added to

the plot indicates the 95% prediction interval corresponding to temperature 21.8 �C – the

temperature predicted by the model to yield the desired mean diameter of 100mm. From a

process improvement point of view, the modelling has demonstrated that there is the potential

to reduce thevariability of diameter and hence to increase process capability through control of

the coolant temperature.

Figure 10.4 Fitted line plot with confidence and prediction intervals.

Table 10.1 Confidence and prediction intervals for diameter.

Temperature Predicted

diameter

95% confidence limits

for diameter

95% prediction limits

for diameter

Lower Upper Lower Upper

17 100.052 100.043 100.061 100.013 100.091

18 100.041 100.034 100.048 100.002 100.080

19 100.030 100.025 100.036 99.992 100.069

20 100.020 100.015 100.024 99.981 100.058

21 100.009 100.005 100.013 99.971 100.047

22 99.998 99.994 100.003 99.960 100.037

23 99.987 99.982 99.993 99.949 100.026

24 99.977 99.969 99.984 99.938 100.016

25 99.966 99.956 99.976 99.927 100.005

26 99.955 99.944 99.967 99.915 99.995
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As a second example, consider the data available in Lactation.MTW. It gives milk yield

(kg) and energy intake (MJ/d) for a sample of 40 cows. The fitted line plot for the linear

regression of yield on energy is displayed in Figure 10.5. The R2 value indicates that the linear

relationship betweenyield on energy explains around 80%of thevariation in yield. (The reader

is invited to verify that the P-value for the slope parameter is 0.000, to three decimal places.

Thus there is strong evidence of a linear relationship.)

The plot of residuals against fitted values is shown in Figure 10.6. The fact that this plot has

an arched appearance (indicated by the broad arc superimposed on the plot) rather than the

Figure 10.6 Residuals versus fitted values for linear model.

Figure 10.5 Fitted line plot for lactation data.
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appearance of a horizontal band of randomly distributed points suggests that the linear model

is inadequate. The plot indicates that there is still structure of a curvilinear nature in the data

that might be utilized in order to improve the model. The simplest way to introduce curvature

into the model is to make use of the quadratic model

Yi ¼ aþb1xi þb11x
2
i þ ei;

where a is the intercept parameter, b1 is the slope parameter, b11 is the quadratic parameter

and ei is the random error, with mean 0 and standard deviation s. This model may be fitted

using Stat>Regression>Fitted Line Plot. . . and checking Quadratic as the Type of

Regression Model. UsingGraphs. . . the option to plotResiduals versus fitswas checked

under Residual Plots.

The fitted line plot is shown in Figure 10.7. The quadratic relationship between yield and

energy explains around 84% of the variation in yield – the linear model explained around 80%

of the variation, so the addition of the quadratic term has yielded a modest increase in

explanatory power.

The plot of residuals against fitted values for the quadratic model is shown in Figure 10.8

and is a more satisfactory residual plot than the one for the previous model. The Session

window output is displayed in Panel 10.6. The heading Polynomial Regression Analysis

indicates that the software has fitted a polynomial curve, in this case a quadratic curve or

parabola, to the data.

The equation of the quadratic curve is given together with the estimate, s, of the standard

deviation of the random errors. The R2 value is given together with an analysis of variance for

the overall quadratic regression model. It provides a test of the hypotheses

H0 : b1 ¼ b11 ¼ 0; H1 : Not all bs are zero:

Figure 10.7 Quadratic model fitted to lactation data.
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With P-value 0.000, to three decimal places, the null hypothesis cannot be rejected. The

sequential analysis of variance, with P-values less than 0.01 for both the linear and quadratic

terms, provides evidence that both terms are worth including in the model.

In order to carry out an alternative analysis it is necessary to use Calc>Calculator to

calculate a new column, named Energy��2, say, containing the squares of the energy values.

The quadratic regression may be found using Stat>Regression>Regression. . . . In the

dialog Response: Yield and Predictors: Energy and ‘Energy��2’ must be specified as

indicated in Figure 10.9. Residual plots may be created using Graphs. . . as before.

Polynomial Regression Analysis: Yield versus Energy  

The regression equation is 

Yield = 2305 + 64.80 Energy - 0.1644 Energy**2 

S = 492.501   R-Sq = 83.8%   R-Sq(adj) = 82.9% 

Analysis of Variance 

Source      DF        SS        MS      F      P 

Regression   2  46355973  23177986  95.56  0.000 

Error       37   8974605    242557 

Total       39  55330577 

Sequential Analysis of Variance 

Source     DF        SS       F      P 
Linear      1  43749257  143.55  0.000 

Quadratic   1   2606716   10.75  0.002 

Panel 10.6 Session window output for the quadratic regression model.

Figure 10.8 Residuals versus fitted values for quadratic model.
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Part of the Session window output is shown in Panel 10.7. Here the P-values provide

evidence that the constant term in the model is nonzero and that the coefficients of the energy

term and the energy squared term are both nonzero. The latter two P-values are identical to

those given in the sequential analysis of variance in Panel 10.6.

From the point of view of quality improvement the creation of a quadratic model can assist

with the determination of optimum conditions under which to run a process. The fitted

quadratic curve, extrapolated for energy values up to 250, is shown in Figure 10.10. Themodel

suggests to animal scientists that yield of milk could potentially be maximized by targeting

energy intake levels of around 200 for the cows. Further investigation would be needed to

confirm that yield could be expected to decrease for energy levels beyond 200.

The data for the final example in this section are reproduced from Gorman and Toman

(1966) by permission of the American Society for Quality and are discussed by Hogg and

Figure 10.9 Dialog for fitting quadratic regression model.

Regression Analysis: Yield versus Energy, Energy**2  

The regression equation is 

Yield = 2305 + 64.8 Energy - 0.164 Energy**2 

Predictor      Coef  SE Coef      T      P 

Constant     2305.3    593.7   3.88  0.000 

Energy        64.80    11.36   5.70  0.000 

Energy**2  -0.16438  0.05014  -3.28  0.002 

S = 492.501   R-Sq = 83.8%   R-Sq(adj) = 82.9% 

Panel 10.7 Session window output for the quadratic regression model.
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Ledolter (1992, pp 393–398). They are available in Rut.MTWand give change in rut depth (y)

and viscosity of the asphalt (x) for experimental sections of pavement. Scrutiny of the

scatterplot of the data in Figure 10.11 suggests that the relationship is nonlinear.

Rather than fit a polynomialmodel, such as a quadratic or cubic,Hogg andLedolter applied

a logarithmic transformation to both x and y. This transformation may be carried out directly

using Calc>Calculator to calculate new columns containing the logarithms to base 10 of

both x and y. The linear regression of log10y on log10x may then be obtained using Stat>
Regression>Regression. . . . Alternatively, usemay bemade of Stat>Regression>Fitted

Figure 10.11 Plot of change in rut depth against asphalt viscosity.

Figure 10.10 Dialog for quadratic regression model.
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Line Plot. . . , specifying y as the response and x as the predictor. Under Options. . . ,

Transformations it is necessary to check Logten of Y and Display logscale for Y variable

together with Logten of X and Display logscale for X variable. The output is shown in

Figure 10.12. This model has an R2 of 72%, whereas a simple linear regression model fitted to

the data yields an R2 of 64%. The residual plots are satisfactory, so the logarithmic

transformations have yielded an adequate model of the situation.

So farwe have considered situationswherewe have createdmodels of the formY¼ f(X) for

a single response, Y, in terms of a single factor or predictor, X. In the next section we consider

models of the form Y¼ f(X) or Y¼ f(X1,X2, . . . ) for a single response, Y, in terms of a series of

factors or predictors, X1, X2, . . . under the heading of multiple regression.

10.2 Multiple regression

The simplest multiple regression model is the linear model

Yi ¼ b0 þb1x1i þb2x2i þ ei;

where b0 is the intercept parameter,b1 and b2 are the (partial) regression coefficients, and ei is

the random error, with mean 0 and standard deviation s. It follows that

EðYiÞ ¼ Eðb0ÞþEðb1x1iÞþEðb2x2iÞþEðeiÞ ¼ b0 þb1x1i þb2x2i;
varðYiÞ ¼ varðeiÞ ¼ s2;

where s2 is a constant. This means that if Y is measured or observed repeatedly for a particular

pair of values of x1 and x2, then the resulting values will have a statistical distribution with

mean b0 þb1x1i þb2x2i and variance s2.

Figure 10.12 Regression of log10y on log10x.
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The further assumptions that the random errors are independent and normally distributed

are also frequently made. A consequence of these assumptions is that the population of Y

values that could be observed for a given pair of values of x1 and x2 has the normal distribution

with mean b0 þb1x1i þb2x2i and variance s2.

The next example concerns a market research company wishing to predict weekend

circulation of daily newspapers inmarket areas. It ascertained circulation (Y, in thousands) in a

sample of 25 market areas, together with total retail sales (x1, in millions of dollars) and

population density (x2, adults per squaremile). The data are available in Circulation.MTWand

are from W. Daniel and J. Terrell, Business Statistics for Management and Economics, 5th

edition, p. 531,� 1989 byHoughtonMifflinCompany and usedwith permission.As a first step

the data may be displayed in the form of scatterplots of y versus each of the two x variables as

displayed in Figure 10.13. These may be obtained using Graph>Matrix Plot. . . and

selecting Each Y versus each X and Simple.

These plots indicate linear relationships between both Y and x1 and Y and x2. A multiple

regressionmodelmay be fitted using Stat>Regression>Regression. . . , specifying Y as the

response and both x1 and x2 as predictors. As always, diagnostic plots of the residuals should

be selected under Graphs. . . .

Part of the Sessionwindowoutput is shown in Panel 10.8. Themultiple regression equation

is stated initially. The ANOVA table provides a test of the null hypothesis that both b1 and b2

are zero. The P-value of 0.000, to three decimal places, provides strong evidence that the null

hypothesis should be rejected in favour of the alternative hypothesis that not both not both of

the partial regression coefficients are zero.

In the earlier section of the output the results of individual t-tests on the bs are given.With

P-values of 0.004, 0.003 and 0.026 respectively, the null hypothesis that b0¼ 0, the null

hypothesis that b1¼ 0 and the null hypothesis that b2¼ 0 would all be rejected at the 5% level

of significance. In addition, the standard deviation of the randomerror is estimated to be 0.0822

and the R2 value is 98%. Thus 98% of the variation in circulation (Y) can be explained by its

Figure 10.13 Scatterplots of Y versus x1 and x2.
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linear dependence on both total retail sales (represented by x1) and population density (x2).

Both a normal probability plot of the residuals and a plot of the residuals against fitted values

appear to be satisfactory. Thus we can be confident that we have an adequate model of

the situation.

Suppose that the company wished to predict circulation for a market area with total retail

sales of $25 million and population density 50 adults per square mile. Predictions may

be obtained by using Stat>Regression>Regression. . . again, with Response: y and

Predictors: x1x2, specified as previously. In order to predict for x1¼ 25 and x2¼ 50, under

Options. . . specify Prediction intervals for new observations: 25 50. Note that order of

entry is important here – the values of the predictor variablesmust be entered in the same order

as the variables were entered under predictors. More than one pair of values for x1 and x2may

be entered if required, or alternatively, the names of two columns containingmatching pairs of

values for x1 and x2 may be entered.

The resulting Session window output is shown in Panel 10.9. Thus for the market area of

interest the model predicts circulation of 3.2984 thousands, i.e. of 3298 to the nearest whole

number. The 95% confidence interval converts to (3198, 3399). We can be 95% confident that

Predicted Values for New Observations 

New Obs     Fit  SE Fit       95% CI            95% PI 

      1  3.2984  0.0487  (3.1975, 3.3993)  (3.1003, 3.4965) 

Values of Predictors for New Observations 

New Obs    x1    x2 

      1  25.0  50.0 

Panel 10.9 Prediction using the multiple regression model.

Regression Analysis: y versus x1, x2  

The regression equation is 

y = 0.382 + 0.0678 x1 + 0.0244 x2 

Predictor     Coef  SE Coef     T      P 

Constant    0.3822   0.1203  3.18  0.004 

x1         0.06779  0.02006  3.38  0.003 

x2         0.02443  0.01021  2.39  0.026 

S = 0.0821991   R-Sq = 98.0%   R-Sq(adj) = 97.8% 

Analysis of Variance 

Source          DF      SS      MS       F      P 

Regression       2  7.3818  3.6909  546.25  0.000 

Residual Error  22  0.1486  0.0068 

Total           24  7.5304 

Panel 10.8 Session window output for multiple regression.
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the mean circulation, for market areas with total retail sales of $25 million and population

density of 50, will lie in this interval. The 95%prediction interval converts to (3100, 3496).We

can be 95% confident that the individual circulation, for an individual market area with total

retail sales of $25 million and population density of 50, will lie in this interval. Such

predictions could be of value to the company in terms of making improvements to production

scheduling and distribution.

As a second example, data on percentage elongation of 24 specimens of a steel alloywill be

investigated. The data are available in Elongation.MTWand are reproduced by permission of

Oxford University Press Inc., New York. The data, available in Elongation.MTW are from

p.426 ofFundamental Concepts in theDesign of Experiments, 5th edition byCharles R.Hicks

and Kenneth V. Turner, Jr, copyright� 1964, 1973, 1982, 1993, 1999 and used by permission

of OxfordUniversity Press, Inc., NewYork. Elongation (Y) and the percentages of five specific

chemical elements (x1, x2, x3, x4 and x5) were determined for each specimen. In terms of

creating a multiple regression model here, which is linear in the predictor variables x1, x2, x3,

x4 and x5, we have two choices for each predictor – either omit or include. Thus there are

25¼ 32 possible models, 31 if we discount the trivial model that involves none of the

predictors. Initial exploration of potential models may be made using Stat>Regression>
Best Subsets. . . with y specified as Response:, x1, x2, x3, x4 and x5 as Free Predictors and

defaults accepted otherwise.

The Session window output is shown in Panel 10.10. By default, summary information is

provided in the output for the ‘best’ two models involving 1, 2, 3 and 4 predictors and the

single model involving all 5 predictors. In addition to R2 and the adjusted R2, Mallow’s Cp

statistic is listed for each of the nine models. (The Cp statistic here should not be confused

with the capability index Cp.) For example, the fourth row of information (highlighted in

bold) indicates that the multiple regression involving the two predictors x2 and x5 (indicated

by the crosses vertically below the 2 and 5 in the headings) has R2¼ 49.2%, adjusted

R2¼ 44.4% and Mallow’s Cp statistic of 0.8. Hicks and Turner (1999, p. 425) comment:

‘Even though many independent variables may be used, simpler models are more appealing

and easier to interpret. Thus, we try to identify the smallest subset of the independent

variables that will provide an adequate model.’ Many statisticians compare the adjusted R2

values for candidate models.

Best Subsets Regression: y versus x1, x2, x3, x4, x5  

Response is y 

                       Mallows          x x x x x 

Vars  R-Sq  R-Sq(adj)       Cp       S  1 2 3 4 5 

   1  31.4       28.3      5.4  2.3077    X 

   1  28.3       25.1      6.5  2.3590      X 
2  49.2       44.4      0.8  2.0328    X     X 

   2  47.3       42.3      1.5  2.0703    X X 

   3  50.7       43.3      2.3  2.0529    X X   X 

   3  49.8       42.3      2.6  2.0710    X   X X 

   4  51.2       40.9      4.1  2.0952    X X X X 

   4  51.0       40.7      4.1  2.0988  X X X   X 

   5  51.4       37.9      6.0  2.1477  X X X X X 

Panel 10.10 Session window output from best subsets regression.
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With a simple linear regressionmodel, i.e. one involving a single predictor variablex, and a

response y, R2 is the coefficient of determination given by the square of the correlation

coefficient, r, between x and y. With two or more predictor variables, R2may be considered as

the square of the correlation coefficient between the observed data value, y, and the fitted value

Ŷ . Every new predictor added to a multiple regression model will lead to an increase in the

value of R2. The adjusted R2, denoted by R-Sq (adj) in Minitab, is given by

R2
adj ¼ 1�

n� 1

n� p� 1
ð1�R2Þ;

where n is the number of observations and p is the number of predictor variables in the model.

The statistic R2 is computed from sample data and may therefore be considered as an estimate

of a population value. The value of adjusted R2 provides a better estimate of this population

value than does R2.

A plot of the ‘best’ adjusted R2 values for each number of predictors is displayed in

Figure 10.14. This points to the model involving the two predictors x2 and x5 as being worthy

of further investigation. This may be done using Stat>Regression>Regression. . . . The

usual residual plots should be examined together with plots of residual against predictor (x)

variables not currently in the model. The residual for the 23rd specimen is unusually large. In

situations such as this, assuming no data input error has been made, analysis of the data with

that observation excluded can be informative. Pattern or structure in residual plots can indicate

the need to introduce predictors that are the squares of x variables (curvature terms) or the

products of pairs of x variables (interaction terms).

Some statisticians use Mallow’s Cp statistic as an aid to model selection. ‘The Cp statistic

appeals nicely to common sense and is developed from considerations of the proper

compromise between excessive bias incurred when one underfits (chooses too few model

terms) and excessive prediction variance produced when one overfits (has redundancies in the

Figure 10.14 Plot of maximum adjusted R2 versus number of predictors.
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model)’ (Walpole andMyers, 1989, p. 447). If p denotes the number of model parameters then

‘Cp> p indicates a model that is biased due to being an underfitted model, while Cp� p

indicates a reasonable model’ (Walpole and Myers, 1989, p. 448).

Minitab provides another major tool for the development of regression models – stepwise

regression methods. It will not be considered in this book. Hicks and Turner (1999, p. 428)

comment that ‘these procedures may miss some models considered by the all-subsets

procedure’ and ‘use of all-subsets regression is recommended when adequate computing

facilities are available’. Readers whowish to learn more about variable selection in regression

model building might find it beneficial to consult the book by Montgomery et al. (2006).

10.3 Response surface methods

The creation of response surfacemodels essentially involves fittingmultiple regressionmodels

to experimental data. To introduce response surface experimental designs, we consider an

experiment carried out to investigate the tensile strength (Y, g/cm) of film used in the food

industry. Customers of themanufacturer of the film had been experiencing problems due to the

film tearing during food packaging operations. The manufacturer set up a Six Sigma project in

order to determine if changes tomanufacturing process settings would yield stronger film. The

project team decided that the factors seal temperature (�C) and the amount of a plastic additive

(%) should be investigated. The settings currently used in production were 140 �C and 4%

respectively, andmean tensile strengthwas stable and predictablewith amean around 63 g/cm.

Phase 1 of the experimentation involved a 22 factorial design (replicated twice) with low and

high levels of 120 �C and 160 �C for temperature and 2% and 6% for amount of additive,

supplemented by four runs carried out with the current settings of 140 �C and 4%. The five

factor–level combinations involved are displayed in Figure 10.15. There is no simple rule for

Figure 10.15 Factor–level combinations for 22 factorial experiment with centre points.
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selection of the low and high levels in such scenarios – the project teamwould need to consider

the selection carefully, taking into account the views of peoplewith knowledge and experience

of running the process.

Usewasmade of Stat>DOE>Factorial>Create Factorial Design. . . to carry out the

design and create a pro forma for recording results. With Number of factors: 2, under

Designs. . . the specifications madewereNumber of center points per block: 4,Number of

replicates for corner points: 2 andNumber of blocks: 1. Randomization was used. The key

data are shown in Table 10.2, with the factor levels in the random order obtained from the

software, and the full data set is available in Phase1.MTW. (If the readerwishes to re-create the

design and perform the analysis that follows then the response data in the final column of

Table 10.2 will have to be entered into his/her worksheet in the appropriate order.)

The initial ANOVA obtained using Stat>DOE>Factorial>Analyze Factorial

Design. . . is shown in Panel 10.11. It provides no evidence of any interaction or of any

curvature (P-values 0.598 and 0.263, respectively). Before creating a contour plot of the

response surface one may therefore remove the interaction term from the model. This is

achieved by using Stat>DOE>Factorial>Analyze Factorial Design. . . again using

Terms. . . to remove the interaction (AB) term from the Selected Terms: window. One must

Analysis of Variance for y (coded units) 

Source                  DF   Seq SS   Adj SS   Adj MS       F      P 

Main Effects             2  302.712  302.712  151.356  127.42  0.000 

  Temperature            1  173.911  173.911  173.911  146.41  0.000 

  Additive               1  128.801  128.801  128.801  108.43  0.000 

2-Way Interactions       1    0.361    0.361    0.361    0.30  0.598 

  Temperature*Additive   1    0.361    0.361    0.361    0.30  0.598 

  Curvature              1    1.760    1.760    1.760    1.48  0.263 

Residual Error           7    8.315    8.315    1.188 

  Pure Error             7    8.315    8.315    1.188 

Panel 10.11 ANOVA for Phase 1 experiment.

Table 10.2 Phase 1 data for 22 factorial experiment

with centre points.

Temperature Additive y

160 2 64.1

140 4 61.6

160 2 60.8

140 4 62.4

120 2 52.1

120 6 60.6

160 6 69.6

120 2 53.3

120 6 61.7

140 4 63.1

140 4 62.5

160 6 70.5
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also uncheck Include center points in the model in order to create a contour plot as a follow-

up to the model revision. With no evidence of interaction or curvature a plane surface will

provide an adequate model in the region of the design space explored in Phase 1, so omitting

the centre points is justified. Of particular interest for this revisedmodel is the output displayed

in Panel 10.12. The P-values for temperature and amount of additive provide very strong

evidence of important main effects of both.

Having fitted the revised model, one may proceed to use Stat>DOE>Factorial>
Contour/Surface Plots. . . to create the required display. Contour plot was checked and

Setup. . . involved specifying Response: C7 y. In addition, underContours. . . the option to

Use defaultswas accepted forContourLevels and, underDataDisplay, bothContourLines

and Symbols at design points were checked, but not Area. The plot is displayed in

Figure 10.16.

Note the solid circle symbols indicating the five FLCs, or design points, used in the

experimentation so far and previously displayed in Figure 10.15. A line from the centre point

of the design, in the direction of increasing tensile strength, y, at right angles to the contour

lines, has been added. This is the line of steepest ascent, and Phase 2 of the experimentation

involved duplicate process runs at a series of FLCs along the line of steepest ascent. (Amethod

Figure 10.16 Contour plot for Phase 1.

Factorial Fit: y versus Temperature, Additive  

Estimated Effects and Coefficients for y (coded units) 

Term         Effect    Coef  SE Coef       T      P 

Constant             61.858   0.3109  198.99  0.000 

Temperature   9.325   4.662   0.3807   12.25  0.000 

Additive      8.025   4.013   0.3807   10.54  0.000 

Panel 10.12 Revised model for Phase 1.
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for determining FLCs along a line of steepest ascent is detailed in one of the follow-up

exercises.) The data are displayed in Table 10.3 and available in Phase2.MTW.

Note that, as the investigation moved further away from the original centre point, tensile

strength began to increase and then decreased again. It peaked with temperature 210 �C and

10% additive, so Phase 3 of the experimentation involved a response surface design, with two

replications, centred at this point.

In order to create such a design use may be made of Stat>DOE>Response Surface

>Create Response Surface Design. . . . The defaultCentral Composite type of design was

accepted, with Number of factors: 2. Clicking on Designs. . . reveals the two available

designs for the case of two factors. The default Full design involves 13 runs (or FLCs) and one

block. This design was adopted withNumber of replicates: 2 specified and defaults accepted

otherwise. Under Factors: the default that Levels Define Cube points (corners of the square

defining the 22 factorial that forms the basis of the design in terms of coded units) was accepted

and then the factors temperature and amount of additivewith the levels selected by the project

team (200 �C and 220 �C for temperature and 9% and 11% for amount of additive) were

specified in the usual way. The reader should note that these FLCs for corner points are

symmetrically placed relative to the centre point levels of 210 �C for temperature and 10% for

amount of additive identified in Phase 2 as being a region of the design space worth exploring.

The data are displayed in Figure 10.17 and available in Phase3.MTW.

In terms of coordinates in the temperature–additive space, the centre point for the design

was (210, 10),with the four corner points (200, 9), (220, 9), (200, 11), (220, 11). In addition, the

central composite response surface design involved the FLCs corresponding to the axial points

(195.9, 10), (210, 11.4), (224.1, 10), (210, 8.6). Note that Minitab uses codes in the PtType

column of theworksheet to indicate centre points (code 0), corner (or cube) points (code 1) and

axial points (code � 1).

Use of Stat>DOE>Response Surface>Analyze Response Surface Design. . . is

required to analyse the data. Once this had been done the contour plot displayed in

Figure 10.18 was created using Stat>DOE>Response Surface>Contour/Surface

Plots . . . . The contour plot indicates that maximum strength, y, of around 79 g/cm can be

expected with the FLC of temperature 206 �C and additive 9.8%. Thus, given that with

current operating conditions mean strength was around 63 g/cm, the Six Sigma project

indicates that a 25% increase to a mean of around 79 g/cm appears feasible. The peak on the

response surface has been indicated by the triangular symbol and the nine FLCs for the

response surface design are indicated by the solid circles. Hogg and Ledolter (1992, pp.

409–410) provide a calculus-based procedure for calculating the factor levels corresponding

to an optimum point and for determining the nature of the optimum point. The solid circles

indicate the FLCs used in the response surface design.

Table 10.3 Phase 2 data from exploration along line of steepest ascent.

Temperature Additive y1 y2 Mean

170 6.6 74.8 74.3 74.55

190 8.3 78.8 77.5 78.15

210 10.0 80.1 79.2 79.65

230 11.7 76.3 77.5 76.90

250 13.5 74.4 74.6 74.50
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Figure 10.18 Contour plot for Phase 3.

Figure 10.17 Response surface design experiment worksheet.
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The FLCs used in all three phases of the experimentation are displayed in Figure 10.19.

The display highlights the iterative nature of the experimentation. The factorial experiment

performed in Phase 1 indicated a promising direction in which to carry out further investi-

gation. Having found an FLC at which yield reached a peak from Phase 2, a response surface

design centred in the region of this combination provided Phase 3 and indicated a likely

optimal FLC.

Minitab enables central composite response surface designs to be created and analysed for

up to 10 factors. In many situations process teams have to consider a number of responses, and

it may not be possible to optimize all of them simultaneously. Montgomery (2005a, 2009)

gives comprehensive details and examples.

10.4 Categorical data and logistic regression

The use of correlation to investigate relationships or association between continuous random

variables and the use of least squares regression to model relationships in which the response

was continuous were introduced in Chapter 3 and developed further earlier in this chapter. The

rest of this chapter is devoted to the introduction of methods for investigation of association

between categorical variables and for modelling relationships in which the response is

categorical. There are two main types of measurement scales for categorical variables –

ordinal and nominal. An example of an ordinal scale is the assessment of the condition of a

road surface as bad, poor, fair, good or excellent. An example of a nominal scale is the plant

where a model of automobile was assembled, e.g. Linwood or Ryton.

10.4.1 Tests of association using the chi-square distribution

A company that manufactures marine radar systems builds scanners usingmain bearings from

two suppliers, A and B. One year after installation of systems, engineers from the company

Figure 10.19 Display of all FLCs used in the three phases of the experimentation.
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service the scanners and check the main bearings for wear. From a random sample of 100

service reports the scanners were categorized according to the bearing supplier and the state of

the main bearing, yielding Table 10.4.

The null hypothesis of interest here is that there is no association between bearing supplier

and bearing state, with the alternative hypothesis being that there is an association, i.e. that the

bearing state is contingent on the supplier. Tables such as Table 10.4 are known as contingency

tables. If the null hypothesis is true then the events that a bearing was supplied by A and is

sound are independent. From the table we may then carry out the calculations displayed in

Box 10.1. The reader is invited to calculate, using the method outlined in Box 10.1, the

expected counts for the other three cells – all four expected counts are shown in Table 10.5. In

the case of a 2� 2 contingency table as we have here, once one expected frequency has been

obtained the others may be obtained by ensuring that the correct marginal totals are obtained.

Thus a 2� 2 contingency table has one degree of freedom – an r� c contingency table, with r

rows and c columns, has degrees of freedom given by (r � 1)� (c � 1).

The test statistic for the hypothesis test is:

x2 ¼
P ðOi �EiÞ

2

Ei

¼
ð32� 28Þ2

28
þ

ð3� 7Þ2

7
þ

ð48� 52Þ2

52
þ

ð17� 13Þ2

13

¼ 0:571þ 2:286þ 0:308þ 1:231
¼ 4:396; with 1 degree of freedom:

An estimate for the probability that a bearing was supplied by A is P(A)¼ 35/100. An

estimate for the probability that a bearing was sound is P(S)¼ 80/100. If the null

hypothesis is true then an estimate of PðA \ SÞ is

PðA \ SÞ ¼ PðAÞ � PðSÞ ¼
35

100
�

80

100
:

Hence, the expected frequency of scanners supplied by A with sound bearings is

100�
35

100
�

80

100
¼

35� 80

100
¼

Row total� Column total

Sample size
:

Box 10.1 Calculation of an expected frequency.

Table 10.4 Contingency table of scanner data.

Classification of sample of scanners by

bearing supplier and bearing state

Bearing state

Sound Worn

Bearing supplier
A 32 3 35

B 48 17 65

80 20 100
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Use of Graph>Probability Distribution Plot. . . >View Probability yields the P-value.

Under the Distribution tab, Distribution Chi-Square is specified from the drop-down menu

withDegrees of freedom:1. Under the Shaded Area tabXValue is checked,XValue: 4.396

specified andRight Tail selected. On clickingOK the display reveals the P-value to be 0.036,

correct to three decimal places. Since this is less than 0.05 the null hypothesis that there is no

association between bearing supplier and bearing state would be rejected in favour of the

alternative there is an association, at the 5% level of significance. This test is often referred to as

Pearson’s chi-square test in honour of the statistician Karl Pearson.

This result may be obtained directly from Minitab using Stat>Tables>Chi-Square

Test (Two-Way Table inWorksheet). . . having set up the four counts from the contingency

table in, say, columns C1 and C2 of a worksheet. Having specified Columns containing the

table:C1C2, clickingOK yields the Sessionwindow output in Panel 10.13which confirms all

the calculations performed earlier.

From the contingency table we have an estimate of the probability of wear for a bearing

from supplier A, pA ¼ 3=35 ¼ 0:0857, and from supplier B, pB ¼ 17=65 ¼ 0:2615. Thus we
could say that we estimate that a bearing from supplier A is approximately one third as likely to

Chi-Square Test: C1, C2  

Expected counts are printed below observed counts 

Chi-Square contributions are printed below expected counts 

          C1     C2  Total 

    1     32      3     35 

       28.00   7.00 

       0.571  2.286 

    2     48     17     65 

       52.00  13.00 

       0.308  1.231 

Total     80     20    100 

Chi-Sq = 4.396, DF = 1, P-Value = 0.036 

Panel 10.13 Output for chi-square test for association.

Table 10.5 Contingency table showing observed (Oi) and expected (Ei) counts.

Classification of sample of scanners by

bearing supplier and bearing state

Bearing state

Sound Worn

Bearing supplier
A 32 (28) 3 (7) 35

B 48 (52) 17 (13) 65

80 20 100
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show signs of wear as a bearing from supplier B. One measure of association for a two-way

contingency table is the relative risk defined as the ratio of the two probabilities: here the

relative risk (A toB) is pA=pB ¼ 0:0857=0:2615 ¼ 0:338; similarly, the relative risk (B toA) is

the reciprocal of this, 3.051. For an event with probability p the odds are defined as p/(1 � p).

Hence, we have that the odds for wear in a bearing from supplier A are

pA

1� pA
¼

0:0857

0:9143
¼ 0:094;

and in a bearing from supplier B are

pB

1� pB
¼

0:2615

0:7385
¼ 0:354:

Another measure of association for a two-way contingency table is the odds ratio, defined

as the ratio of the two odds. Thus the odds ratio (A to B) is

OddsA

OddsB
¼

0:0937

0:3541
¼ 0:26;

and similarly the odds ratio (B to A) is the reciprocal of that, 3.78.

Intuitively, the relative risk is an easier measure of association to interpret than the odds

ratio. The two are related by the equation

Relative riskðA to BÞ ¼ Odds ratioðA to BÞ �
1� pA

1� pB
:

Odds ratios occur in binary logistic regression analysis and will be referred to again in the next

section.

The raw data extracted from the scanner service reports is provided in the worksheet

Bearings.MTW. The first column contains scanner service reference numbers, the second

the supplier of the main bearing, and the third indicates whether or not signs of wear were

found. In order to cross-tabulate the data to form the contingency table and to carry out

the chi-square test of association one may use Stat>Tables>Cross Tabulation and

Chi-Square. . . as indicated in Figure 10.20. Supplier was allocated to rows and Wear to

columns, counts checked under Display, Fisher’s exact test for 2� 2 tables checked

under Other Stats . . . and Chi-Square analysis checked under Chi-Square. . . .

The reader is invited to check that the resultant Session window output includes the key

output in Panel 10.13 together with a P-value of 0.027 for an alternative chi-square test and a

P-value of 0.039 for Fisher’s exact test for association. The latter test is named in honour of

the statistician Ronald Fisher. All three tests lead to the same conclusion, i.e. that the null

hypothesis of no association would be rejected at the 5% level of significance.

The Pearson chi-square test involves a degree of approximation. Minitab displays

the number of cells that have expected counts less than 5. Minitab Help (Stat>Tables>
Cross Tabulation and Chi-Square. . . >Help> see also>Methods and formulas>
Chi-Square test) states: ‘Some statisticians hesitate to use the x2 test if more than 20% of

the cells have expected counts below five, especially if the p-value is small and these cells give
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a large contribution to the total x2 value’. If the expected counts for some are small it may be

possible to carry out an analysis by combining or omitting row and/or column categories. On

the other hand, as the name implies, the Fisher test is exact and may be used with confidence

when expected counts in a 2� 2 contingency table are low.

Duncan (1959) gives the data in Table 10.6 on causes of rejection of metal casting by week

of manufacture. The data, from Hunt (1948), reproduced by permission of the American

Society for Quality, are available in Castings.MTW. The reader is invited to use Stat>
Tables>Chi-Square Test (Two-Way Table in Worksheet). . . to carry out the test and

verify that the Session window output includes the statement ‘Chi-Sq¼ 45.597, DF¼ 12,

P-Value¼ 0.000’. No expected counts less than 5 were obtained so the analysis provides very

strong evidence (P-value< 0.001) that there is a difference in the distribution of rejects from

week to week.

Table 10.6 Causes of rejection of metal castings.

Cause of rejection Week 1 Week 2 Week 3

Sand 97 120 82

Misrun 8 15 4

Shift 18 12 0

Drop 8 13 12

Corebreak 23 21 38

Broken 21 17 25

Other 5 15 19

Figure 10.20 Dialog for cross-tabulation and chi-square test of association.
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10.4.2 Binary logistic regression

In binary logistic regression the response variable has two categories. In order to introduce the

topic, we consider the data in Table 10.7 and Space_Shuttle.MTW fromDalal et al. (1989) and

reprinted with permission from the Journal of the American Statistical Association, all rights

reserved. It gives temperature (�F) at the time of launch for 23 Space Shuttle missions and a

classification of eachmission as either a success or failure in terms ofO-ring performance. The

classification was based on examination of O-rings that became available for inspection

following launches. The temperature column gives the air temperature at the time of launch.

For example, for the two launches that took place with air temperature 75 �F, there was one

where O-ring failure is known to have occurred. Thus at air temperature 75 �F the estimated

probability of a launch free of O-ring failures is P(Success)¼ p¼ 1/2¼ 0.5.

The question of interest is whether or not there is any relationship between p and x. If the

answer is in the affirmative then the question arises of whether or not the relationship can be

modelled. As a first step a display was created in the form of a plot of p against xwith a Lowess

smoother applied. Locally weighted scatterplot smoothing, LOWESS, may be used to explore

the relationship between two variables without fitting a specific model and may be added to a

scatterplot by right-clicking the graph and selecting Add>Lowess. . . . The author used

Degree of smoothing: 0.45 and Number of steps: 2 in creating Figure 10.21.

The fit from the smoother has the approximate appearance of an S-shaped or sigmoid

curve. The logistic function is one mathematical function that may be used to model sigmoid

curves and is described in Box 10.2.

The logit of p is a linear function of x sowe could attempt to estimate the parameters a and

b of the logistic model by fitting a straight line to a scatterplot of the logit of p versus x. We

encounter an immediate problem with this approach for the current data set in that the logit

Table 10.7 Space Shuttle launch O-ring data.

Temperature x Launches O-ring failure-free launches P(Success)¼ p

53 1 0 0.0

57 1 0 0.0

58 1 0 0.0

63 1 0 0.0

66 1 1 1.0

67 3 3 1.0

68 1 1 1.0

69 1 1 1.0

70 4 2 0.5

72 1 1 1.0

73 1 1 1.0

75 2 1 0.5

76 2 2 1.0

78 1 1 1.0

79 1 1 1.0

81 1 1 1.0
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function of p is undefined for p¼ 0 and for p¼ 1. In practice, the method of maximum

likelihood is used to estimate the parameters a and b of the logistic model. It may be

implemented in Minitab using Stat>Regression>Binary Logistic Regression. . . . The

dialog required is shown in Figure 10.22.Response in event/trial formatwas checked as the

response data appear in the worksheet as two columns – one containing the number of O-ring

failure-free launches and the other containing the number of launches. Thus Number of

events: O-ring failure free launches and Number of trials: Launches were specified.

Under Model: Temperature x was entered. No entries were required under Factor: in

this case. Under Storage. . . , Event probability was checked under Characteristics of

Estimated Equation in order to obtain fitted values of the probability of anO-ring failure-free

launch for subsequent plotting.

A logistic function linking p to x may be written in the form

p ¼
expðaþbxÞ

1þ expðaþbxÞ
;

where a and b are the function parameters. The formula may be conveniently rearranged

in the form

ln
p

1� p
¼ aþbx:

The function lnðp=ð1� pÞÞ is the logit of p.

Box 10.2 The logistic function.

Figure 10.21 Plot of P(Success), p versus temperature, x.
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Summary information given in the first section of the Session window output is shown in

Panel 10.14. In simple linear regression, the expected value of the response, Y, is given by the

linear function aþbx, i.e. the expected value of the response is related directly to the linear

function. In the form of logistic regression applied here the logit function of the expected

probability of success is a linear function aþbx. Thus in this case the logit function provides

the link between the expected response of interest, probability of success, and the linear

function ofx. Hence the statement ‘Link Function: Logit’ in Panel 10.14. (Other link functions

may be used but will not be considered in this book.) The Response Information summary

displayed in Panel 10.14 may be readily checked from Table 10.7.

The next portion of the output is displayed in Panel 10.15. The method of maximum

likelihood has provided the estimates of � 15.04 and 0.2322 respectively for the logistic

Binary Logistic Regression: O-ring failu, Launches versus Temperature  

Link Function: Logit 

Response Information 

Variable                      Value      Count 

O-ring failure free launches  Event         16 

                              Non-event      7 

Launches                      Total         23 

Panel 10.14 Summary information from logistic regression analysis.

Figure 10.22 Dialog for binary logistic regression.
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parameters a (the constant) and b (the coefficient of temperature x or slope parameter). With

P-values of 0.041 and 0.032 we can conclude that both a and b differ significantly from zero.

The logistic model fitted to the data may be written as

ln
p

1� p
¼ aþbx:

The ratio p/(1 � p) is the odds. The odds ratio in this context is the value of exp(b) and is

estimated by exp(0.2322)¼ 1.26, with 95% confidence interval (1.02, 1.56). The odds ratio

may be interpreted as the factor by which the odds increase for a unit increase in x, i.e. for an

increase of 1 �F in temperature,

The results from goodness-of-fit tests of the logistic model are provided in the next portion

of Session window output in Panel 10.16, the null hypothesis being that a logistic model

provides a good fit to the data. Since none of the three P-values are small the null hypothesis

cannot be rejected, so we conclude that the logistic model provides a potential model of the

situation.

The remaining Session window output comprises a table of observed and expected

frequencies and a table of measures of association. The observed and fitted probabilities,

computed using Storage. . . , from the model are plotted against temperature in Figure 10.23.

The default name for the fitted event probability column, EPR01, was changed to pfit. Initially

a scatterplot of p versus xwas created. On right-clicking the plotAdd>Calculated Line. . .

was selected in order to plot the fitted logistic regression curve. Under Coordinates the

selections Y column: pfit and X column: Temperature x were made.

Some statisticians quote the value of x that corresponds to probability 0.5. The dotted lines

added to the plot indicate that, for the fitted model, the value of x for which p is 0.5 is

Goodness-of-Fit Tests 

Method           Chi-Square  DF      P 

Pearson             11.1303  14  0.676 

Deviance            11.9974  14  0.607 

Hosmer-Lemeshow     11.0395   8  0.199 

Panel 10.16 Goodness-of-fit tests for the logistic regression model.

Logistic Regression Table 

                                                  Odds     95% CI 

Predictor          Coef   SE Coef      Z      P  Ratio  Lower  Upper 

Constant       -15.0429   7.37862  -2.04  0.041 

Temperature x  0.232163  0.108236   2.14  0.032   1.26   1.02   1.56 

Log-Likelihood = -10.158 

Test that all slopes are zero: G = 7.952, DF = 1, P-Value = 0.005 

Panel 10.15 The logistic regression table.
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approximately 65. Thus the model predicts that there is probability of 0.5 that a Space Shuttle

launch will be O-ring failure-free at temperature 65 �F. The calculation is as follows. We have

p¼ 0.5, so

ln
0:5

1� 0:5
¼ ln1 ¼ 0 ¼ aþbx

so

x ¼ �
a

b
:

Thus in this case the required temperature is estimated by

�
� 15:04

0:2322
¼ 64:8:

Themodelling carried out has established a relationship between the probability of a Space

Shuttle launch being O-ring failure-free and air temperature. One may think of the random

variable Y that takes the value 0 for a Space Shuttle launch with O-ring failures and the value 1

for a launch that was O-ring failure-free. The fitted logistic model enables prediction of the

value of Y for a given value of x in the sense that prediction may be made of the conditional

probability

PðY ¼ 1jTemperature ¼ xÞ ¼ p ¼
expðaþbxÞ

1þ expðaþbxÞ
:

Figure 10.23 Binary logistic regression model fitted to data.
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For temperature 31 �F the model predicts

PðY ¼ 1jx ¼ 31Þ ¼ p ¼
expð� 15:04þ 0:2322� 31Þ

1þ expð� 15:04þ 0:2322� 31Þ
¼ 0:004:

Thus for a Space Shuttle launch taking place at 31 �F the model predicts a probability of 0.004

for it to be O-ring failure-free. (Such a prediction should be viewed with some caution as it

involves extrapolation, i.e. prediction at a temperature well below any observed value.

However, scrutiny of the column of predicted probabilities reveals that the fitted logistic

model yields a probability of 0.06 for a launch at 53 �F, the lowest observed temperature, to be

O-ring failure free.) At the time of theChallenger Space Shuttle launch on 28 January 1986 the

air temperature was 31 �F. The catastrophe that occurred was attributed to failure of an O-ring.

When there are two or more predictor variables x1, x2, . . . , the logistic regression

model becomes

ln
p

1� p
¼ b0 þb1x1 þb2x2 þ . . . :

As an example, we will consider data discussed by Everitt (1994, pp. 54–66) on patients

suffering from acute myeloblastic leukaemia. The patients were given a course of treatment

and the binary response recordedwaswhether or not a patient responded to treatment. The data

are from a paper by Hart (1977), available in Leukaemia.MTWand reproduced by permission

of John Wiley and Sons Inc., New York.

Six variables were recorded for each patient prior to treatment: age at diagnosis, x1; smear

differential percentage of blasts, x2; percentage of absolute marrow leukaemia infiltrate, x3;

percentage labelling index of the bone marrow leukaemia cells, x4; absolute blasts, x5; and

highest temperature prior to treatment, x6. The responses recorded were: the response to

treatment, y1, where 0¼ Fails to respond to treatment, 1¼Responds to treatment; survival

time from diagnosis (months), y2; and status, y3, where 0¼Dead, 1¼ Still alive. (No reference

will be made to y2 and y3 in this book.)

To begin the analysis Stat>Regression>BinaryLogistic Regression. . . was used to fit

a model involving all six of the candidate predictor variables recorded prior to treatment. Here

Response: y1 was specified on checkingResponse in response/frequency format as the raw

data are in raw binary format, and Model: x1 x2 x3 x4 x5 x6 was entered.

Key Session window output is displayed in Panel 10.17. The Response Information

indicates that 24 of the 51 patients in the sample responded to the treatment. The test of the null

hypothesis that all slopes are zero,

H0 : b1 ¼ b2 ¼ b3 ¼ b4 ¼ b5 ¼ b6 ¼ 0;

yields P-value 0.000, to three decimal places. Thus the null hypothesis would be rejected in

favour of the alternative hypothesis that at least one of thebs is nonzero. None of the goodness-

of-fit tests has a small P-value, so there is no evidence of lack of fit. However, scrutiny of

the P-values in the Logistic Regression Table suggests that x2, x3 and x5 do not contribute to

the model. Thus a second model, involving only x1, x4 and x6, was fitted. In addition, under

Graphs. . . the two diagnostic plots of Delta chi-square versus probability and Delta

chi-square versus leverage were selected. An explanation of the background to these plots
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is beyond the scope of this book, but values of delta chi-square of around 4 or higher flag the

possible presence of unusual observations in the data, observations that merit further scrutiny.

The Logistic Regression Table for the second model is shown in Panel 10.18. The

estimated value of the coefficient b1 of age (x1) in the model is � 0.0585, and the

corresponding odds ratio is 0.94. Consider two patients similar in all respects except that

one is 1 year older than the other. Themodel predicts that the odds in favour of the older patient

responding to the treatment are 94% of the odds in favour of the younger patient responding to

the treatment. The estimated value of the coefficient b4 of percentage labelling index of the

bone marrow leukaemia cells (x4) in the model is 0.3849, and the corresponding odds ratio is

1.47. Consider two patients similar in all respects except that one has percentage labelling

index of the bone marrow leukaemia cells that is 1% higher than the other. The model predicts

that the odds in favour of the patient with the higher percentage responding to the treatment

are 147% of the odds in favour of the patient with the lower percentage responding to

the treatment.

Binary Logistic Regression: y1 versus x1, x2, x3, x4, x5, x6  

Link Function: Logit 

Response Information 

Variable  Value  Count 

y1        1         24  (Event) 

          0         27 

          Total     51 

Logistic Regression Table 

                                                 Odds     95% CI 

Predictor        Coef    SE Coef      Z      P  Ratio  Lower  Upper 

Constant      98.5236    40.8532   2.41  0.016 

x1         -0.0602925  0.0272871  -2.21  0.027   0.94   0.89   0.99 

x2         -0.0047997  0.0410745  -0.12  0.907   1.00   0.92   1.08 

x3          0.0362132  0.0393374   0.92  0.357   1.04   0.96   1.12 

x4           0.398447   0.132773   3.00  0.003   1.49   1.15   1.93 

x5          0.0134344  0.0578199   0.23  0.816   1.01   0.90   1.14 

x6          -0.102229  0.0418088  -2.45  0.014   0.90   0.83   0.98 

Log-Likelihood = -20.030 

Test that all slopes are zero: G = 30.465, DF = 6, P-Value = 0.000 

Goodness-of-Fit Tests 

Method           Chi-Square  DF      P 

Pearson             40.3923  44  0.627 

Deviance            40.0599  44  0.641 

Hosmer-Lemeshow      5.3804   8  0.716 

Panel 10.17 Initial logistic regression analysis of leukaemia data.
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The plot of delta chi-square versus leverage is displayed in Figure 10.24. Brushing

(introduced in Chapter 3) was used to identify the row numbers, which match the patient

numbers, for those observations yielding values of delta chi-square in excess of 4. It certainly

suggests that patient number 47 is unusual in some respect, and possibly also patients 48

and 50.

Consider again the data in Table 10.5 in the previous section presented in the form

displayed in the worksheet in Figure 10.25. Also shown is the dialog required to analyse the

data via binary logistic regression. Note that Supplier is specified both forModel: andFactors

(optional):. The relevant Sessionwindow output is shown in Panel 10.19. Note that it gives the

odds ratio (B to A) as 3.78, as obtained in the previous section, and that in addition it gives the

95% confidence interval (1.02, 13.95) for this ratio. An odds ratio of 1 corresponds to bearing

wear being independent of supplier. The fact that the confidence interval does not include 1

provides evidence, at the 5% level of significance, that bearing wear is dependent on supplier.

Since all values in the interval exceed 1 the conclusion from the data is that the odds of wear

being present in the bearings are significantly greater for supplier B.

Binary Logistic Regression: y1 versus x1, x4, x6

Link Function: Logit

Response Information

Variable Value Count

y1 1 24 (Event)

0 27

Total 51

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 87.3880 35.4581 2.46 0.014

x1 -0.0585016 0.0255764 -2.29 0.022 0.94 0.90 0.99

x4 0.384926 0.121518 3.17 0.002 1.47 1.16 1.86

x6 -0.0889732 0.0360684 -2.47 0.014 0.91 0.85 0.98

Log-Likelihood = -21.633

Test that all slopes are zero: G = 27.259, DF = 3, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P

Pearson 41.1411 47 0.713

Deviance 43.2654 47 0.628

Hosmer-Lemeshow 8.6631 8 0.372

Panel 10.18 Logistic regression table for second model.
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Logistic Regression Table 

                                              Odds     95% CI 

Predictor      Coef   SE Coef      Z      P  Ratio  Lower  Upper 

Constant   -2.36712  0.603807  -3.92  0.000 

Supplier 

 B          1.32914  0.666513   1.99  0.046   3.78   1.02  13.95 

Panel 10.19 Logistic regression table for 2� 2 contingency table.

Figure 10.24 Delta chi-square versus leverage plot.

Figure 10.25 2� 2 contingency table set up for analysis using binary logistic regression.
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Minitab also provides ordinal logistic regression and nominal logistic regression. If

patients in a hospital classified the level of pain experienced during recovery from a knee

replacement operation as beingmild,moderate or severe then ordinal logistic regressionwould

be appropriate in an investigation of the relationship between pain experienced and predictors

such as gender and age. This is the case as there is a natural ordering in the response –moderate

represents a greater level of pain thanmild and, in turn, severe represents a greater level of pain

than moderate. In addition to predictors, factors such as type of replacement joint may be

introduced into themodelling.Nominal logistic regressionwould be appropriatewhere there is

no natural ordering in possible values for the response. An investigation of preferred methods

of payment for supermarket customers, with possible values credit card, bank card, cheque and

cash, in relation to gender, age and disposable income could be undertaken using nominal

logistic regression. Minitab Help provides examples.

Logistic regression is one example of a generalized linear model. Montgomery (2005a,

p. 563) provides further details and examples and makes the following comments.

‘Generalized linear models have found extensive application in biomedical and pharmaceu-

tical research and development. As more software packages incorporate this capability, it will

find widespread application in the general industrial research and development environment.’

10.5 Exercises and follow-up activities

1. Table 10.8 gives the mass (tonnes) and fuel usage (kilometres/litre) for a sample of 10

vehicles.

(a) Obtain the least squares regression of y on x and store the residuals and fitted values.

(b) Give an interpretation of the slope of the regression line.

(c) Give an interpretation of the value of R2.

(d) Check the values of some fitted values and residuals.

(e) Perform diagnostic checks of the model using residual plots.

2. In an investigation of the shelf life of a cereal, data were obtained on shelf time, x

(days), and percentage moisture content, y. The data are given in Table 10.9.

(a) Investigate the regression of y on x.

Table 10.9 Moisture content and shelf time.

x 0 3 6 8 10 13 16 20 24 27 30 34 37 41

y 2.4 2.6 2.7 2.8 3.0 3.0 3.1 2.7 3.4 3.6 3.7 3.9 4.0 4.5

Table 10.8 Mass and fuel usage for a sample of vehicles.

Mass x 1.27 1.68 1.63 1.45 1.86 1.18 1.63 1.54 1.72 1.22

Fuel Usage y 6.1 5.3 5.5 5.8 5.2 6.3 5.6 5.5 5.5 6.0
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(b) Obtain a 95% prediction interval for the moisture content of an individual box of

the cereal that has been stored on a shelf for 30 days.

Consumer testing indicated that the cereal is unacceptably soggywhen themoisture

content is greater than 4.0. On the basis of the prediction interval you have calculated,

would you recommend to a supermarket manager that he continue to stipulate a shelf

life of 30 days for this brand of cereal? Does analysis of the data following removal of

the unusual data value alter your conclusion?

3. In the manufacture of glass bottles gobs of molten glass are poured from the furnace

into themoulds inwhich the containers are formed by the action of compressed air. The

gob temperature is of major importance and the manufacturer was interested in being

able to predict gob temperature from the temperature obtained from a sensor located

in the fore-hearth of the furnace. An experiment was conducted from which a series

of 35 values of gob temperature (y) and fore-hearth temperature (x) were obtained.

The data are available in the worksheet Gob.MTW and reproduced by permission of

Ardagh Glass Ltd., Barnsley.

(a) Carry out a regression analysis of y on x with diagnostic checks of the residuals.

(b) Display the data, with fitted line and 95% prediction interval curves.

(c) Obtain a 99%prediction interval for gob temperaturewhen fore-hearth temperature

is 1165 and state, with justification, whether or not you would advise the furnace

supervisor to pour glass for a container requiring a target gob temperature of 1150

when fore-hearth temperature is displayed as 1165 on the furnace control panel.

(d) State thevalue of fore-hearth temperature thatwould yield the narrowest prediction

interval for gob temperature.

4. Table 10.10 gives systolic blood pressure (SBP, y) measured inmillimetres of mercury

and the age (x) measured in years for a sample of women considered to be in

good health.

Obtain the regression line of y on x and show that the slope differs significantly

from zero.

(a) Plot residuals and comment on the adequacy of the model.

(b) Obtain 95% prediction intervals for the systolic blood pressure of women aged 50

years and 20 years, respectively.

5. During the development of a biocide for use in hospitals, a microbiologist carried out

an experiment using a trial solution. Twelve beakerswere set up, each containing 50ml

of a nutrient broth with microbial spores in suspension. At the start of the experiment a

Table 10.10 SBP and age for a sample of women.

Age (x) 71 53 40 42 47 49 74 43 50 49 67 37

SBP (y) 158 139 126 131 128 141 167 116 128 126 148 121

EXERCISES AND FOLLOW-UP ACTIVITIES 451



fixed amount of the biocide was added simultaneously to each beaker. At 10-minute

intervals thereafter, a beakerwas selected at randomand the spore count determined by

amethod thatmeant that the beaker could no longer be part of the experiment. The data

in Table 10.11 were obtained and are provided in Biocide.MTW.

(a) Fit a least squares regression line of spore count on time.

(b) Explain how the plot of residuals confirms the poor fit of the model.

In order to improve the model she considered the equation

N ¼ N0e
� kt;

where N represents the spore count and t the time.

(c) Express loge N as a linear function of t and obtain the least squares regression of

loge N on t.

(d) Perform diagnostic checks of the revised model.

(e) Use the revised model to estimate the decimal reduction time D, i.e. the time

predicted by the model for the biocide to reduce the number of spores to one-tenth

of its initial value.

6. TheMinitabworksheet EXH_Regr.MTW, available in theMinitab SampleData folder

supplied with the software, contains in columns C9 and C10 values of energy

consumption (y) and setting (x) for a type of machine. Use Stat>Regression>
Fitted Line Plot. . . to fit a quadratic model to the data. Is the model improved by

making a logarithmic transformation of the response? Create a column containing the

values of x2, fit the models using Stat>Regression>Regression. . . and carry out

diagnostic checks of the residuals.

7. The Minitab worksheet Trees.MTW, available in the Minitab Sample Data folder

supplied with the software, gives diameter, height and volume for a sample of 31 black

Table 10.11 Data from biocide experiment.

Time (minutes) Spore count (organisms per ml)

10 16 518

20 15 177

30 10 084

40 8 533

50 8 823

60 6 690

70 6 042

80 4 890

90 4 065

100 3 166

110 3 012

120 1 852
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cherry trees from Allegheny National Forest in the USA. Diameter (feet) was

measured 4.5 feet aboveground.Heightwasmeasured in feet and volume in cubic feet.

Suppose that the forest management team wish to develop a model to enable

prediction of timber production, i.e. amodel that may be used to predict volume, which

is difficult to measure, from diameter and height measurements. Explore models

involving the three variables and also the three variables after logarithmic transfor-

mation of all three. Which model would you recommend?

8. TheMinitab worksheet EXH_Regr.MTW (see Exercise 6 above) contains in columns

C3 to C8 data, from a project on solar thermal energy, on total heat flux from homes. It

is desirable to ascertain whether total heat flux can be predicted from insolation, the

position of the focal points in the east, south, and north directions and from time.

(i) Use best subsets regression to select a potential regression model to predict heat

flux from a subset of the five candidate predictor variables.

(ii) Fit your selected model and carry out diagnostic checks of the residuals.

9. The worksheet BHH1.MTW contains data from Phase 1 of an illustration of response

surface methodology given by Box et al. (1978, pp. 514–525). (All the data in this

exercise are reproduced by permission of John Wiley & Sons, Inc., New York.) The

design used was a single replication of a 22 factorial with the addition of three centre

points. The response was yield (g) from a laboratory-scale chemical production

process and the factors were time (low 70minutes, high 80minutes) and temperature

(low 127.5 �C, high 132.5 �C). The centre point (75, 130) represented current

operating factor levels prior to the experimentation.

(i) Verify, from scrutiny of the ANOVA from Stat>DOE>Factorial>Analyze

Factorial Design. . . , that there is no evidence of curvature and no evidence of

interaction.

(ii) In order to create a contour plot, repeat the analysis having, under Terms. . . ,

removed the interaction term from the model and unchecked Include center

points in the model. You should obtain the Session window output displayed in

Panel 10.20 – providing evidence that both time and temperature appear to

influence yield and indicating that the equation of the fitted model, in terms of

the coded units, is y¼ 62.0 þ 2.35x1 þ 4.50x2 (with the constant and the

coefficients quoted to three significant figures).

Estimated Effects and Coefficients for y (coded units) 

Term         Effect    Coef  SE Coef       T      P 

Constant             62.014   0.6011  103.16  0.000 

Time          4.700   2.350   0.7952    2.96  0.042 

Temperature   9.000   4.500   0.7952    5.66  0.005 

Panel 10.20 Part of Session window output.
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(iii) Use Stat>DOE>Factorial>Contour/Surface Plots. . . to create a contour

plot. Choose Contour Plot and under Setup. . . check Display plots using:

Coded units. UnderContours. . . insertValues: 56 58 60 62 64 66 68 asContour

Levels. UnderData Display selectContour lines and Symbols at design points.

Thiswill create the plot in Figure 10.26, butwithout the annotation.The point (0, 0)

in coded units represents the centre point of the design.

The line of steepest ascent is the line through (0,0) in the above plot at right

angles to the contours in the direction in which yield increases. Somemathematics

is presented in Box 10.3 that enables FLCs on the line of steepest ascent to be

calculated.

(iv) Set up, in aMinitab worksheet, columns named x1, x2, Time and Temperature and

assign values 0, 1, 2, 3, 4 and 5 to x1. Use Calc>Calculator to compute x2 from

the equation of the line of steepest ascent and to decode the values in x1 and x2 to

give the time and temperature values. The values you should obtain are shown in

Table 10.12.

The first row corresponds to the centre point (a useful cross-check on the

computations) and the average yield for the three runs at this FLC is readily verified

to be 62.3. The process team decided to carry out a further run with the FLC

(80, 135). This gave the encouraging yield of 73.3, so the next run was carried out

with the combination (100, 154). The result was a disappointing yield of 58.2.

Then use of (90, 144) gave yield 86.8, representing substantial improvement.

(v) Add the yield column to your worksheet and display the Phase 2 data. (The data are

available in BHH2.MTW)

As a result of the knowledge gained from Phase 2, the Phase 3 experimentation

involved a central composite design centred on time 90minutes and temperature

145 �C. The data are available in worksheet BHH3.MTW.

Figure 10.26 Line of steepest ascent.
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In terms of the coded units, the contour lines are specified by the model equation

y ¼ 62:0þ 2:35x1 þ 4:50x2:

In particular, the contour for yield 62.0 is specified by

62:0 ¼ 62:0þ 2:35x1 þ 4:50x2:

This equation may be written as

x2 ¼ �
2:35

4:50
x1:

To obtain the equation of the line of steepest ascent it is necessary to change the sign on the

right-hand side and to invert the ratio which forms the coefficient of x1. Thus the equation

of the line of steepest ascent is given by

x2 ¼ þ
4:50

2:35
x1 ¼ 1:91x1:

The coding equations are

x1 ¼
Time� 75

5
and x2 ¼

Temperature� 130

2:5
:

They may be rearranged to give

Time ¼ 5x1 þ 75 and Temperature ¼ 2:5x2 þ 130:

Box 10.3 Determination of the line of steepest ascent.

Table 10.12 Data from Phase 2 exploration along line of steepest ascent.

Phase 2 Experimentation on the line of steepest ascent

x1 x2 Time Temperature Yield

0 0.00 75 130.000 62.3

1 1.91 80 134.775 73.3

2 3.82 85 139.550

3 5.73 90 144.325 86.8

4 7.64 95 149.100

5 9.55 100 153.875 58.2
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(vi) Analyse the data and display the response surface as a contour plot, with time on

the horizontal axis and temperature on the vertical axis.

Box et al. conclude the illustration by stating that the surface ‘represents an oblique rising

ridgewith yields increasing from the lower right to the top left corner of the diagram, that

is, yield increases as we progressively increase temperature and simultaneously reduce

reaction time’. Were it desirable to increase yield still further then ‘subsequent exper-

imentation would have followed and further explored this rising ridge’.

10. The contour plots in Figure 10.27 display four types of response surface encountered in

modelling process behaviour. In the cases of the saddle and the stationary ridge, what

recommendationswould youmake, given that the goal was tomaximize the responses?

11. Open the Pulse.MTW worksheet provided in the Minitab Sample Data folder. Use

Help> ? Help and the Search tab to perform a search for Pulse. Double clicking on

PULSE.MTW then reveals a description of and key to the data set.

(i) Form a 2� 2 contingency table that classifies the sample by smoking habit and

gender and test for association using both the chi-square and Fisher’s exact test.

(ii) Form a contingency table that classifies the sample by smoking habit and level of

activity and test for association. Note that a 2� 4 contingency table results for

which the chi-square analysis involves three expected frequencies less than 5, so

Figure 10.27 Examples of response surfaces.
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Minitab issues awarning in the Sessionwindow output that the chi-square analysis

is probably invalid.

Code activity levels 0 and 1 as low, 2 as moderate and 3 as high, and form and

analyse the corresponding contingency table.

12. NIST/SEMATECH (2005) gives an industrial example in which 309 wafer defects

were recorded and the defects were classified according to type (A,B,C, or D) and

according to the production shift at time of manufacture of the wafer (1, 2, or 3). The

data are given in Table 10.13.

Emphasis has been placed on the display of data in this book, so prior to formal

analysis the reader is invited to set up the contingency table as shown in Figure 10.28

and useGraph>BarChart . . . withBars represent:Values from a table, clicking on

Cluster underTwo-way table, clicking onOK, then selectingGraph variables:A-D,

Row labels: Shift and accepting defaults otherwise to display the data. Repeat with

the second option for Table Arrangement. Do you consider one display to be more

informative than the other? Carry out a formal test for association.

13. Cox (1970, p. 86) provides data on the duration of heating, T, for ingots and on the

numbers not ready for rolling, R, summarized in Table 10.14 and reproduced by

permission of Taylor & Francis Group. Model the relationship between readiness for

rolling and duration of heating. On a scatterplot of the observed probability of

readiness for rolling versus duration of heating superimpose the curve giving the

fitted probability of readiness for rolling as a function of duration of heating.

Table 10.13 Contingency table classifying defects in wafers.

Type of defect

Shift A B C D

1 15 21 45 13

2 26 31 34 5

3 33 17 49 20

Figure 10.28 Contingency classifying defects in wafers.
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14. The worksheet ChemProc.MTW gives data on the reaction time and catalyst used in a

chemical production process and an indication of whether or not the final product was

of prime quality. Use binary logistic regression to fit a model involving both reaction

time and catalyst. Catalyst has to be specified as a factor aswell as being included in the

model. Store the event probabilities (for all observations) and display them plotted

against reaction time using Graph> Scatterplot. . . , selecting With Connect and

Groups and specifying Catalyst under Categorical variables for grouping. State

recommendations that can be made with regard to running the process.

15. Obtain the odds ratio with a 95% confidence interval for each of the scenarios

Tables 10.15 and 10.16. Comment.

Table 10.15 Scenario 1.

Classification of sample of scanners by

bearing supplier and bearing state

Bearing state

Sound Worn

Bearing supplier
P 5 5 10

Q 7 3 10

12 8 20

Table 10.14 Data on ingot readiness for rolling.

Duration of heating T No. not ready for rolling R No. tested N

7 0 55

14 2 157

27 7 159

51 3 16

Table 10.16 Scenario 2.

Classification of sample of scanners by

bearing supplier and bearing state

Bearing state

Sound Worn

Bearing supplier
P 50 50 100

Q 70 30 100

120 80 200
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